Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode.

نویسندگان

  • Georg Bieker
  • Martin Winter
  • Peter Bieker
چکیده

This comparative work studies the self-enforcing heterogeneity of lithium deposition and dissolution as the cause for dendrite formation on the lithium metal anode in various liquid organic solvent based electrolytes. In addition, the ongoing lithium corrosion, its rate and thus the passivating quality of the SEI are investigated in self-discharge measurements. The behavior of the lithium anode is characterized in two carbonate-based standard electrolytes, 1 M LiPF6 in EC/DEC (3 : 7) and 1 M LiPF6 in EC/DMC (1 : 1), and in two alternative electrolytes 1 M LiPF6 in TEGDME and 1 M LiTFSI in DMSO, which have been proposed in the literature as promising electrolytes for lithium metal batteries, more specifically for lithium/air batteries. As a result, electrolyte decomposition, SEI and dendrite formation at the lithium electrode as well as their mutual influences are understood in the development of overpotentials, surface resistances and lithium electrode surface morphologies in subsequent lithium deposition and dissolution processes. A general model of different stages of these processes could be elaborated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Solid Electrolyte Interphases on Lithium Metal Anode

Lithium metal batteries (LMBs) are among the most promising candidates of high-energy-density devices for advanced energy storage. However, the growth of dendrites greatly hinders the practical applications of LMBs in portable electronics and electric vehicles. Constructing stable and efficient solid electrolyte interphase (SEI) is among the most effective strategies to inhibit the dendrite gro...

متن کامل

Solid Electrolyte Interphase Formation on Silicon and Lithium Titanate Anode Materials in Lithium-Ion Batteries

Aiming at an improved knowledge of the formation of the solid electrolyte interphase (SEI), as basis for the safe and efficient use of new anode materials, we investigated the SEI formation on silicon and lithium titanate (LTO) anodes by electrochemical impedance spectroscopy (EIS) and ex situ X-ray photoelectron spectroscopy (XPS) measurements. While the EIS measurements performed at equidista...

متن کامل

NMR Study of the Solid Electrolyte Interface on a High Performance Lithium Metal Anode

Introduction: Li metal is an ideal anode material due to its low density (0.534 g cm -3 ), the lowest negative electrochemical potential (-3.040 V vs. standard hydrogen electrode) and extremely high theoretical special capacity (3860 mAh g -1 ), which is ten times as high as that of carbonaceous materials. However, several seemingly insurmountable barriers, including limited Columbic efficiency...

متن کامل

A Highly Reversible Lithium Metal Anode

Lithium metal has shown a lot of promise for use as an anode material in rechargeable batteries owing to its high theoretical capacity. However, it does not meet the cycle life and safety requirements of rechargeable batteries owing to electrolyte decomposition and dendrite formation on the surfaces of the lithium anodes during electrochemical cycling. Here, we propose a novel electrolyte syste...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 14  شماره 

صفحات  -

تاریخ انتشار 2015